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AFIT/GNE/ENP/90M-1

ABSTRACT

This paper investigates the effect of cooling a hot
Planckian emitter upon its fluence spectrum . A sequence of
models of increasing complexity is developed to determine
the effects of various aspects of cooling upon the spectrum,
such as initial temperature, density, and ionization state
of the plasma. Spectra are calculated for radiating plasmas
composed of different atomic number materials (carbon, alu-
minum, copper, and plutonium) at initial temperatures of
0.02 - 10 KeV, and initial densities of 1E+25 - 1E+29
atoms/m®, to observe the effects of these parameters on the
fluence spectrum. The change in material and binding energy
for some spectra at the low energy end produces a second,
prominent but smaller peak. The resulting nan-Planckian
spectra can be approximated with two or more Planckian basis

functions having different temperatures.
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TIME - INTILGRATED SPECTRUM

OF A RADIATIVELY COOLING PLANCKIAN EMITTER

I. Introduction

This paper deals with computing the spectral distribu-
tion of thermal radiation emanating from an extremely hot

body, and how cooling effects its spectrum taken over time.

Background

Astronomers have long been interested in the spectral
character of radiation coming from hot bodies such as stars,
quasars, and supernovas, to obtain clues to their makeup,
temperature, age, and internal praocesses that occur in their
life cycle. It is generally recognized that nuclear fusion
is the process that heats the cores of stars to extremely
high temperatures (millions of degrees Kelvin), and causes
them to radiate enormous quantities of energy.

Currently, there is much research effort going on world-
wide to achieve a controlled and sustained source of fusion
energy as an alternative to other sources of energy. Fusion
experiments, then, can serve as likely sources for studying
the spectral nature of hot bodies (plasmas) undergoing spon-

taneous cooling, once the power source is shut off.




One example of an experimental setup that is capable of
achieving high temperatures in a plasma (although not yet to
the point of fusion ignition) is the impleding liner pinch

illustrated in Figure 1, adapted from (1:315).
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Fig. 1. Imploding Liner Pinch

A plasma is contained within a cylindrical thin metal tube
or liner through which a large electric current, i, . is
passed. The axial~-directed current induces an azimuthal
magnetic field, B, , around the liner. Both current and
magnetic field interact together to produce a radial,
inward-directed force, F, , that causes the liner and
plasma to implode. Tre compressive force and inertial
maomentum of the liner are eventually halted by the increas-

ing plasma pressure from within, but by that time compres-




sion has superheated both plasma and liner past the point of
vaporizing and ionizing the liner material which becomes a
part of the plasma.

In order to predict the spectral behavior of a hot body,
such as the plasma in the imploding liner pinch, through a
mathematical model, it is sometimes assumed that the temper-
ature of material and radiation is the same, therefore the
distribution of radiant energy emitted from the body's
surface can be described as Planckian. This study also
assumes this. However, integrating the spectrum over time,
i.e., the time—-integrated spectrum or fluence spectrum,

should show the behavior to be non-Planckian.

Problem

The purpose aof this study is to investigate the effects
of cooling on the fluence spectrum of a Planckian emitter.
In addition, the spectrum is compared to a Planckian curve-
fit spectrum to determine the validity of approximating the

fluence spectrum with Planckian basis functions.

Scope

The study is computational and analytic rather than
experimental, so the results are predictive in nature.
Three parameters are varied as initial conditions for the
Planckian emitter to observe their effects during cooling.
These are temperature, density, and material composition.

The initial temperature range i1is 0.02 - 10 KeV, and the




emitter is allowed to cool to about 1/50,000th of the ini-
tial temperature. Densities range from lE+25 - 1E+29 atoms
per cubic meter, and material composition is one of the

following elements: carbon, aluminum, copper, or plutosnium.

Approach and Assumptions

A sequence of models is considered that increases in
complexity according to the type of internal energy assumed
to be contained within the emitter, whether it be material
energy, radiation energy, or a combination of both, etc.
These models and their assumptions are as follows:

Model | - Radiative Cooling with Constant, Material Heat

Capacity, but No Radiation Heat Capacity.

- The volume is constant; this model excludes cooling by
expansion.

- Local thermodynamic equilibrium exists between matter
and radiation.

- The temperature is uniform throughout the volume at
any instant, but varies with time.

- The heat capacity remains constant throughout the
cooling process.

Model 2 - Radiative Cooling with Temperature Consistent,

Radiation Heat Capacity, but No Material Heat Capacity.

- The above assumptions apply except the radiation heat

capacity varies with temperature.




Model 3 - Radiative Cooling with Constant, Material Heat

Capacity and Temperature Consistent, Radiation Heat

Capacity.

- The assumptions of Model 1 and 2 taken together apply
to this model, with clarification that the heat capacity
contributed by material is constant, and the heat capac-
ity contributed by radiation changes with temperature.

Model & — Radiative Cooling with Temperature Consistent

Heat Capacity.

- Model 3 assumptions are retained except:
- The material heat capacity is allowed to vary accord-
ing to the ionization state of the atoms which is depen-

dent on temperature.

Presentation

Chapter 11 presents the general unalytic form and theory
behind calculating the time—integrated spectrum, and Chapter
11l shows the numerical approximation for the analytic form.
Then Chapters IV - VII present the models in order as dis-
cussed above along with results and discussion of the com-
puted spectra. Conclusions and recommendations are included

in Chapter VIII.




IT. Theory

Let us start with a definition of the radiatively cool-
ing Planckian emitter and its surroundings, followed by some
assumptions about how they interact through the law of
energy conservation, then develop the concept of a time-
integrated spectrum, first as a function of time, then as a
function of temperature. From the latter development, it
becomes apparent that heat capacity plays a major role in

the spectrum behavior.

Definitions

The initially hot body under consideration can be any
collection of ions, electrons, and neutral atoms from a
single element constrained to an arbitrary, constant, finite
volume. For initial temperatures of 0.02 to 10 KeV under-
taken in this study (1 KeV = 11,600,000 K) and densities of
1E+25 to 1E+29 particles/m®, an optically thick plasma is an
appropriate description for the hot body. Within the vol-
ume, the material particles collide with one another giving
rise to radiation particles or photons which in turn are
absorbed or scattered by the material particles. At any
given time, a fraction of these photons reach the volume
boundary and radiate outward, away from the body, depleting
the plasma of its internal energy. The loss of energy is
equivalent to lowering the temperature of the plasma, hence

it cools by radiative emission.




Besides the process of radiative cooling, two other
mechanisms exist for coocling the body. They are the trans-
fer of kinetic energy from material particles to the wall or
force field defining the volume boundary, and expansion of
the volume; however, neither cooling mechanism is considered
in this study.

At any instant in time, assuming the radiation tempera-
ture is the same as the kinetic temperature of the material
particles in a condition of local thermodynamic equilibrium,
the photon energy distribution can be described by the
Planck function at some average temperature. Thus, the
cooling emitter is Planckian in nature.

Just beyond the plasma boundary lies an infinite, empty
universe at temperature T7=0 Kelvin into which the radi-
ation escapes. It is assumed that there is no flux of radi-

ationm into the volume.

Energy Balance

Having defined the cooling emitter and its surroundings,
let us now account for the gain and loss in energy of the
plasma through a differential energy balance equation. In
general, the change in total internal energy of the plasma
with respect to time is equal to the heat flux in minus the
heat flux out of the plasma, plus heat coming from any
internal source minus heat lost to any internal sink, minus
work done by the expanding material. This is expressed in

the equation:




du/dt = Qﬂuxln - Qnuxon + Qwuru - Qunk - va (1)

where the dot over a variable denotes differentiation with
respect to time. Since there is no flux of radiation into
the body from the ocutside universe, the term for heat flux
in is zero. Regarding the source term, the supply of energy
to heat the plasma has stopped (by assumption) so this term
is also zero. The heat sink term represents energy absorbed
by the material particles in endothermic reactions, but it
is assumed that the particles do not react, therefore this
term vanishes. One more term vanishes because the volume
remains constant with time: the work term, which can be
defined as pressure times the change in volume with respect
to time.

Now the change in internal energy per unit time is that
which radiates out through the surface area in the same

amount of time:

dU/dt = -Quueas = -0TA (2)

where 0T{ is the energy per unit area emitted per unit time

from the total surface area A ; T: is the surface tempera-
ture; and 0 is the Stefan-Boltzmann constant. In the above
equation the minus sign signifies a loss of energy to the
surrounding universe. The term ¢T: is a result of Stefan's
law for black body radiation (2:4), and is equivalent to the
Planck distribution of energy per unit area per unit time

Pu(E,T,.) integrated over all photon energies £E£=RV (R is




Planck's constant and v is frequency) at temperature Ter
This surface temperature is the same as the average internal

temperature at time t, and is hereby designated T(t).

Concept of the Time-Inteqrated Spectrum

Let

-, '

PACELE) = p (E.T(E)) = pa(E.T,) (3)
be the Planck function that describes the energy distribu-

tion per unit area per unit time so that
fp,,(E.t)AdE = g[T(t)]*A (4)
0

If the hot body starts with initial internal energy Ul and
is allowed to cool forever, it will eventually lose all its

energy such that the following expression holds true:

Ui = '[-G[T(U]’Adt (5)
Q
hence
F = /;[op,,(E.t)AdE dt = Ui (6)
and defining
rCE) = [ pu(E.nAde 7)
-]

equation (7) is the distribution function that describes the
time-integrated spectrum, which upon normalizing to unit

area is given by

-n

N
ry
~4

&CE) =

(8)




Change of Variables fraom Time to Temperature

So far, the development of the time-integrated spectrum
has dealt explicitly with the time behavior of the radiation
energy distribution, with temperature being a function of
time. This requires knowledge of how the temperature varies
with time, which may not be well known. An equivalent and
easier approach is to determine the behaviar as a functian
of temperature so that the integration of equation (7) is
performed over temperature instead of time. This approach
eliminates the need to know the time behavior explicitly,
and the end result is the same: the fluence spectrum (or
time—-integrated spectrum).

Referring back to equation (7), the integration variable

is changed from time to temperature:

T? dt
f(E) = Pu(E.TYAZ=dT (9)

T

where the initial temperature T, corresponds to ;=0 , and
the final temperature 7T, corresponds to ty=o which may be

caonsidered as 7,=0 , and

2n E?
PJETHIA = c‘h’[e""”—l:l/q (10)

is the Planck distribution of energy per unit time. Equa-
tion (10) is adapted from (2:24) in terms of energy instead
of frequency. his Planck's constant, ¢ is the speed of

light in a vacuum, and k is Boltzmamn's constant.

10




Before proceeding further, dt/d7T in equation (%) can be
transformed by considering the change in total internal
energy as a total derivative with respect to time, volume,

and temperature in which the concept of heat capacity is

du AU(dt) éU(dV) aU(dT)
— = ==+ =] + == (11)
dt at \ dt oV \ dt AT \ dt

In the first term on the right hand side, dl//dt is zero

introduced:

because the internal energy does naot change with just the
passage of time and no other influences. In the second
term, there is no change in volume V as stated before, so

this term is zero. Only the third term remains which con-

tains within it the definition of heat capacity, that is

C{(T) = heat capacity = U /8T {(12)
which is the change in energy per unit change in tempera-
ture. Combining equations (2), (11}, and (12) and rearrang-

ing terms results in the desired transformation for ai/dT :

dt/d7 = -C{T)/oT*A (13)
Now equation (9) becomes
_ 0OC(TIPL(E.T)A
£(E) = /ﬂ ST (14)

Let Di(A,T)A be normalized to unit area in the following

manner with T as a parameter:

11




o pAELT) 4
pEsT) = RS2 (15)
= zh’(UT*)[ CK/RTY _ } (16)
2n%k*
o - s (2:24) (17)
1S E?
B(EST) = (nkT)‘[e“”"’-l] (18)
f‘p(E:T)dE - (19)
(-]

Incorporating ${&;7} into equation (14) and interchanging the

order of integration yields:
T

£CE) -/ BCE:TIC(T)AT (20)
0

This expression says that the time—-integrated spectrum at
photon energy £ has a value equal to the sum of the released
energy with a certain distribution at each temperature T
from the initial temperature down to zero. By integrating
equation (20) over all energy £ and dividing the result into
equation (20), the result is the normalized fluence spectrum

equivalent to equation (8) at any energy & :

8(E) = ‘f(E) . f(E) 21)

f(E)AE F

Heat Capacity

Up to this point, we have explicitly defined the normal-
ized Planck function #(5:T) in equation (18), but have not

explicitly defined the heat capacity C(T) needed to

12




calculate the time-integrated spectrum. Since heat capacity
is the change in internal energy with respect to tempera-
ture, a question to ask is how the internal energy of the
plasma varies with temperature. A general formula for the
total internal energy U as a function of temperature is:

U(T) = Una(T) = U(T) + Vw(T) (22)
where Uy is the material energy: U; is the internal radi-
2tion energy; and Uy is the energy due to latent heats of
transformation., U,z is comprised of several terms that
describe the energy required to change the material state:
that from solid to liquid (latent heat of fusion), from liq-
uid to vapor (latent heat of vaporization), and once in the
vapor state, to ionize or strip off electrons from the atoms
(latent heat of ionization). Specific forms of GC(T) are
deferred to the corresponding chapters that talk about how
each term in equation (22) affects the fluence spectrum

through C(T) .

13




ITII. Numerical Approximation

Equations (20) and (21) , representing the non-
normalized and normalized fluence spectrum, respectively,
are difficult to solve analytically. Therefore, numerical
methods are employed with the use of a computer to approxi-
mate the solutions to these equations.

For convenience, temperature is redefined as §si7 ,

having units of energy. Both & and 5§ are expressed in KeV
throughout the remainder of the paper.

Simpson's rule of integration is used for both integra-
tion over temperature and energy, with the limits of inte-
gration altered slightly from the original limits. For the
lower limits, 9 and 5 cannot assume the value of zero
because either condition causes division by zero in equa-
tions (20) and (21). Therefore, the lowest value for o is a
final temperature of g, >0 , and that for 4 is Ewe>0 .

An upper limit of AhF== 1is likewise impossible to evaluate
numerically in a computer solution, thus J&yum<= . In fact,
Eyps does not need to be more than about 308, because the
upper tail of the spectrum (plot of [{{F) or &(§F) versus &)
always decreases monotonically to zero by h==, for all forms
of ((8) considered in this study, and the area under the tail
in this region is negligible compared to the area beneath

the spectrum curve at energies less than 304, .

14




Another problem arises with how large a number the com-
puter can handle. In particular, a program execution error
occurs if the ratio £/8 in the exponential term in the
denominator of p(FiB) is too large {(approximately 709 encoun-
tered in this study). This condition occurs at all energies
when 8«5 ., Again, for the forms of ((8) presented in this
study, and at any fixed & in the range Q<E <308, , the
integrand of equation (20) adds a negligible contribution to
I(E) at temperatures below about 8=E£/50 .

Taking into account the above observations, the numer-

ical approximation for equation (20) is:
o
f(E) “j p(E;8)C(O)dO, 0,=E/50>0 (23)
of

Note that the lower temperature limit changes with £ . The

approximation for equation (21) is:

f(E f(E
Q(E) = —LF—-)' Elowc ) ' Elow>o '
f f(E)AE
V£ high
Epgp =308, < (24)
For the above two equations,
_1s | _EY ,
p(E:B) = ntet ef/0_ (29)

and {(@)=daU/a take on the specific forms addressed in the

next several chapters.

15




IV. Model 1 - Radiative Cooling with Constant,

Material Heat Capacity, but No Radiation Heat Capacity

In this chapter, we look at a description of the model;
develop a specific form of heat capacity to be used in equa-
tion (23); predict the time—-integrated spectrum behavior
with a collection of one-temperature Planckians; and present
and discuss the results of calculating the time-integrated

spectrum for three different initial temperatures.

Model 1 Description

The first model deals only with the material particles
losing kinetic energy. That kinetic energy is converted to
radiation energy which radiates into space from the surface
of the plasma volume. It does so at a rate that corresponds
to the release of an equal amount of energy for every degree
drop in temperature. In other words, the material heat
capacity is constant; it is independent of temperature. The
internal radiation density, on the other hand, must be neg-
ligible compared to the material energy density to assume
there is little or no radiation heat capacity, that is to
say, very little loss of internal radiation energy per
degree change in temperature. In the absence of internal
radiation energy (U.(8)*0) and internal energy to ionize to
any degree most of the atoms (U (0)=U (8“0 , where '"be"
stands for binding energy), this model, in general, repre-

sents cooling behavior at temperatures much lower than about

16




0.001 KeV (on the order of 100,000 K), the temperature at
which U,(08) and U,(8) become significant compared to the mate-
rial energy, Un(8) . This will become evident in chapters VI
and VII where U.(8) and U,(8) are discussed relative to Ua(8) ,
respectively. However, the model is extended to higher tem-
peratures to observe the cooling behavior of this limiting
case. This simple model is used to demonstrate the
methodology and, as a limiting case, to show how very non-

Planckian the fluence spectrum can be.

Heat Capacity

The expression for C{8) . or actually just C since the
heat capacity in this case is independent of temperature, is
derived from the expression for the material energy only,
Ua(8) in equation (22). Assuming the material particles
exhibit a Maxwell-Boltzmann distribution in energy, the
average kinetic energy of any particle is (3/2)kT=(3/2)8
(3:12). Multiplying this by the total number of particles,
and dividing by the volume gives the material energy den-—

sity:

u,(8) = U (8)/V = N,(3/2)8 (26)

where Ua is the material energy density; and N, is the
atomic number density. Taking the derivative with respect

to temperature gives the heat capacity per unit volume:

C, = C/V = dun/dé = N,(3/2) (27)

17




which is constant, provided the number density remains con-
stant throughout the cooling process. (lonization is disre-
garded until Model 4). Replacing C, for C(8) in equation
(@3), it is possible to bring C, outside the integral sign

as a constant so that equation (24) becomes:

Cy “p(E;e)de
§(F) = 2 (28)

X bigh L]

Cy p(E;8)d6 df
or

T low

v
Because C, cancels in the above equation, it can assume any

constant value without loss of generality. Therefore, Cem1l

to simplify calculation of equation (28).

Planckian Spectra

Note that with (C,=! y the numerator of equation (28)
becomes a sum of normalized Planckians at different tempera-—
tures over the full range of £ . Figure 2 displays several
normalized Planckian spectra at various temperatures
calculated from equation (23). This figure serves to show
the expected trend for the curve of the fluence spectrum.
Curve e, which is not normalized, is the sum of curves a
through d, and represents the approximate shape of the flu-
ence spectrum. It shows that as the temperature continues
to drop, a greater percentage of the total energy is carried

away by lower energy photons or, equivalently, lower fre-

quency photons.
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Mathematically speaking, the curve should continue to
infinity by #&=0 for the following reason. If 5£=8 1in
equation (25), then the portion of the equation equal to
i5/(n*exp(E/8)-1) remains constant, even as both & and ©

* in the denominator becomes the

approach zera. However, §
dominant factor causing P to approach infinity as it
approaches zero. For any fixed ® greater than zero, and as
& approaches zera, the 5 term in the numerator decreases
faster than the denaminator, and is the reason why all of
the above spectra diminish to zeroc by §=0 . Adding more
Planckians to Figure 2 would enlarge curve e, but the curve
should retain its approximate shape. Lower temperature

Planckians added successively to the left of curve d would

add diminishing areas to the total area underneath curve e.
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Thus, when curve e is normalized to unit area, the peak
should reach some finite limit at the left edge of the

graph.

Time-Inteqrated Spectra

Time-integrated spectra with initial temperatures of
0.02, 1, and 10 KeV are calculated from equation (28) using
the computer program listed in Appendix A.

Figure 3 shows the time-integrated spectrum with an ini-

tial temperature of 1 KeV.
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Fig. 3. Model 1| Time-Integrated Spectirum
Normalized to Unit Area: g,=1 KeV

Indeed, the spectrum curve has roughly the same shape as
curve e in Figure 2 from the peak to the upper end of the

spectrum, and the peak approaches a limiting value of about
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0.37 relative units of energy density. Upon closer examina-
tion at the left edge of the graph shown in Figure 4, the
spectrum curve rolls over at about E=0.01 to drop to just

less than 0.05 near E=0 .
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Fig. 4. Model 1 Time—-Integrated Spectrum
{Magnified View) Normalized to
Unit Area; =1 KeV
Actually, £=0.001 was the value for the lower integration
limit in equation (28) for this example. The curve wauld in

fact continue to approach zero at the left end as &
approaches zero. The use of E=0/1000 instead of another
value even closer to zero is justified because the approxi-
mately triangular-shaped area to the left of the curve from
the ordinate value of 0.37 down to zeroc would be a
negligible addition to the area under the curve (1/2 X 0.37
X 0.01) = 0.00185 or about 0.2% compared to 1). The small

peak at the left end in Figure 4 is an artifact of the
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calculation that becomes more narrow and displaced to the

left as the temperature mesh, A48, is made smaller, so in
essence, it may be disregarded.

Spectra for initial temperatures of 0.02 and 10 KeV are
shown, respectively, in Figures 5 and 6. Comparison of all
three time—-integrated spectra reveals, in general, that the
spectrum shifts toward lower energies for lower initial tem-
peratures and toward higher energies for higher initial tem-
peratures, the same as for single-temperature Planckians.
For instance, considering the areas under the curves,
practically 100%4 of the total energy is carried away from
the plasma by photons in the range 0 to 1 KeV when 6,=0.02
KeV, about 33% of the energy when 6,=1 KeV, and only 3%
when 8,=10 KeV. Another feature of the time-integrated
spectra similar to Planckian spectra is the fact that nearly
all of the internal energy is radiated away by photons hav-

ing energies less than 106, KeV.
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Significant differences between the two types of spectra

are the fraction of energy radiated at the lower end of the
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spectrum and the most probable energy for photons. For any
Planckian, approximately 1/30 of the total plasma energy is
radiated at energies below its temperature, @ KeV, whereas
for any Model 1 time—-integrated spectrum, about ten times
the Planckian fraction or one third of the total energy is
radiated at energies below its initial temperature, 9, KeV.
Over time, the most probable energy for photons of a caon-
stant temperature Planckian emitter is £=2.820 , corre-
sponding to the energy location of the peak. For the
cooling Planckian emitter, the most probable energy for
photons shifts toward lower energies over time, the time-

integrated spectrum showing it near E£E=0 .

Summary

Model 1 represents an upper bounding case for energy
density at the low end of the spectrum for the cooling
Planckian emitter. With all of its energy in the form of
material kinetic energy and the heat capacity remaining con-
stant throughout the cooling process, there is an upper
limit to the fraction of total energy radiated at the lower
end of the spectrum. It turns out that density does not
affect the normalized spectrum, as long as there exits saome
amount of material. If material energy constitutes a sig-
nificant portion of the total energy of a caoling bady, its
most influential effect on the time-integrated spectrum
would be seen at lower temperatures at the lower end of the

spectrum.
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In the next chapter we look at a model of the cooling
plasma containing only radiation energy to observe its

effects upon the fluence spectrum.
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V. Model 2 - Radiative Cooling with Temperature Consistent,

Radiation Heat Capacity, but No Material Heat Capacity

We looked at the effect of including only material
energy in the cooling emitter in the last chapter. Now we
take a look at the effect of including only radiation

energy.

Model 2 Description

The second model deals with the plasma cooling through
the loss of radiation energy only. Either the material par-
ticles are at rest, with their kinetic energy being close to
zero (but this would assume the body has already cooled to a
temperature near O KeV), or else the material energy density
is negligible compared to the radiation energy density at
higher temperatures, which is more likely the case. At very
high temperatures, well above the point where the atoms com-
wletely ionize, a drop in temperature to a point still above
complete ionization would result in no change in heat
capacity due solely to ionization. So this model seems
appropriate at very high temperatures. Nevertheless, the
model is extended to low temperatures to observe the cooling
behavior there also, and binding energy is not taken into

account.
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Heat Capacity

The heat capacity in this approximation is dependent on
temperature because of the high degree of dependence that
U.(8) has on temperature. The form for radiation energy den-
sity is:

u,(8) = U, (8)/V = ab! (29)

where a is the radiation constant equal to 8.56E+28 in units

of 1/(KeV-m)2 (3:22). The heat capacity is then:
C,(8) = C(8)Y/V = du,(8)/de = 4ab’ (30)

Replacing C(8) in equation (23) with C,(8) and bringing the
constant, 4a , outside the integral in the numerator and
denominator of equation (24), it is seen that the constants
cancel to give:

8l

or p(E;0)6%d6

8() = £ high [ 81 (31
f P(E;0)6%d0 dE
5 of

low

Mote that Cv(8) could just as well be 6° without loss of
generality, which is the form of heat capacity used to cal-
culate the fluence spectrum for Model 2.

Because the heat capacity has a e? dependernce, more

energy is released from the plasma volume per degree drop in
temperature at higher temperatures than at lower ones. Pho-
tons of higher energy should carry away more of the total

energy than in the case of constant material heat capacity.
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Correspondingly, the peak of the spectrum should, in gen-
eral, shift toward higher energies, but the overall spectrum
behavior must be determined from the heat capacity in

conjunction with the function pB(5;8) .

Time—-Inteqrated Spectra

Predicting the shape of the spectrum can be done by
examining the integrand in the numerator of equation (31)

with p{(F:8) defined in equation (25):

' s _ 1—5_.!" E3 3
B(E:0) 6 n*te—(e““-l)J (32)

In the limiting case at the low end of the spectrum, with
E=8 and EF approaching zero, the entire expression is con-
stant except for a remaining £? term in the numerator.
Therefore, as E? pproaches zero, the integrarnd approaches
zero. At tre -~1gh end of the spectrum with A<f, <= , and £
approaching infinity, the exponential in the denominator
approaches infinity faster than the numerator; hence, the
integrand again approaches zero. In between the two limits,
a peak should occur at the same most probable energy as a
Planckian with fixed temperature 28 (£=2.828), and the entire
curve is scaled in height by the parameter 8° , as seen in
the left hand side of equation (32).

Figure 7 shows the effect of adding several of the func-
tions given by equation (32) for a few different tempera-
tures. Curve d simulates approximately what the fluence

spectrum might look like for a cooling body with a starting
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temperature of 1 KeV. Notice that the peak has shifted to a
higher energy as discussed above, but is left of the peak
for a Planckian with temperature 6, . The second condition
follows from the fact that as the body coocls the energy
distribution shifts to lower energies. Photons are most
likely to have energies that are nearly equivalent to the

body temperature.

0.4 3
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e 0.31 — curva b = 0.75
r 0.25 — curve ¢ = 0.5
3 ) T a — curve d = sum
D 0.2
e
n 0.'\5J b
g
1 0,11
t ¢
O L L] L] T i B ¥ 1 T
0 1 2 3 4 5 6 7 8 9 10
Photon Energy (KeV)
Fig. 7. Planckian Spectra a - ¢ Normalized

to Unit Area and Multiplied by @°

Furthermore, the second condition means there is an upper
limit to the fraction of total energy that can be radiated
at the high end of the spectrum. For example, a Planckian
with temperature 0, KeV radiates a maximum of about 95.46% (or
29/30) of the total enmergy at photon energies higher than 6
KeV. This upper limit should hold true for any time-

integrated spectrum.
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The time—-integrated spectra for Model 2 are calculated
from equation (31), again using the computer program in
Appendix A with the subroutine for computing heat capacity
changed to reflect C,(8)=8° . Figures 8 - 10 depict the
calculated spectra with the same three initial temperatures
used in Model 1. (Figure 10 also includes a comparison with

Planckian spectra, which is discussed shortly.)
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Fig. 8. Model 2 Time-Integrated Spectrum
Normalized to Unit Area; 6,10 KeV
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Fig. 10. Comparison of Time-Integrated Spectrum
8.=1 KeV with Plankian Spectra

All three time-integrated spectra have the same shape on

a relative scale, but are located at different points if
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placed on the same scale. The same trend occurs as in Fig-
ure 1 where the hotter specti-ra have more of their energy
density at higher photon energies. Their peaks are smaller
to accommodate the same area under the curves, and shifted
to the right, to reflect the most probable energies being
within a factor of three from the starting temperatures.
Just the opposite is true of the colder spectra; the peaks

grow taller and shift to the left for the same reasans.

Comparison with Plankian Spectra

Consider the time-integrated spectrum in Figure 10 with
a starting temperature of 1 KeV. The shape of the spectrum
is similar to a Planckian, but as anticipated, the peak is
displaced to the left of that for a 1 KeV Planckian (the
Plamckian shown is one having $=0,7348 KeV). The peak for
the time-integrated spectrum is located at £5=2.078 com-
pared to £§=2.828 for the corresponding Planckian peak, and
the cooling body radiates about 92% of its total energy at
energies above £=¢, compared to 946% for the Planckian
emitter always at a constant temperature.

Figure 10 shows the difference in shape between both
types of spectra having both their peaks at the same energy,
& . 1t can be seen that one Planckian roughly fits the
time-integrated spectrum, whereas a combination of two

Planckians with different temperatures practically matches
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the spectrum. Appendix B contains a computer program to do
the curve fitting using two Planckian basis functions. The

equations for the fit are given by:

P (E) = E¥[exp(E/8,)-1] (33)
P.(E) = EY[exp(E/8,)-1] (34)
8(E) = a,P(E) + a,P(E) (35)

The measure of the fit is given by the sum of the square of

the errors:

SSE = ) (8(E) - &,(E))? (36)

where &(E) is the time-integrated spectrum value from equa-
tion (24), and S$u(F) is the curve-fit value given by equa-
tion (33). From this result, the cooling body can be
thought of as radiating at two temperatures, both below the
initial temperature, instead of many temperatures over the

course of time.

Summary

Model 2 represents an extreme bound in the opposite
direction to Model 1. It shows there is an upper limit to
the fraction of total energy that can be radiated at the
high enc of the spectrum. If the cooling body contains a
significant portion of radiation energy, its effect would be
seen at higher temperatures and energies than the case for
constant material heat capacity, and in fact should be the

dominant factor at the high temperatures and energies under
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consideration, as will be seen in the next two chapters.
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VI. Madel 3 - Radiative Cooling with Constant, Material

Heat Capacity and Temperature Consistent, Radiation Heat

Capacity

This chapter combines the effects of both material and
radiation energy in the cooling body. In the previous two
models, temperature is the only parameter that influences
the energy distribution, but now density becomes impartant,

as we shall see.

Model 3 Descriptiaon

The third model for the cooling body takes into account
the loss of kinetic energy from the material particles and
the loss of radiation energy or those photons that escape
any further interaction withir the plasma. This model could
be valid at low temperatures and at very high temperatures,
but excludes the range of intermediate temperatures where
the ionization state of the atoms is changing with tempera-
ture. Binding energy is not included, but the intermediate
range of temperatures is, so that, as before, cooling
behavior can be observed here too. The densities considered
may be somewhat high for plasmas in fusion experiments; how-
ever, they are chosen to illustrate noticeable effects for

spectra with initial temperatures of 0.02 and 1 KeV.
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Heat Capacity

Both the formula for material energy density from Model
1 and the formula faor radiation energy density from Model 2

comprise the total internal energy density for Model 3:

u(8) = U(e)yv

ua (@) + u,(9) (37)

N, (3/72)8 + a6’ (38)
Notice here why the effect due to material energy is domi-
nant at low temperatures, and the effect due to radiation
energy is dominant at high temperatures. Both N, and a are
about the same order of magnitude for nominal material den-
sities, but 8% is much less than @ for ex] KeV, and it is
much greater than 6 for 8x»] Key, The two terms are equal
at approximately 6-0.36 KeV (6.5 million K) when N,=-1E+28
atoms/m*=.

The derivative of equation (38) with respect to tempera-

ture is the expression for heat capacity for Model 3:

C,(8) = C(8)/V du(8)/de (39)

N,(3/2) + 4ad® (40)

Time-Integrated Spectra
Substituting C,(8) for €(8) in equation (24) results in
the equation to compute the time-integrated spectrum for

this model:

et
j p(E:0)C,(0)d0
ef

Fugh 9

. p(E:0)C(8)de dF
{

8(E) (41)

JIIOW
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All the spectra for Model 3 are calculated from equation
(41) using the computer program in Appendix A, with the sub-
routine to compute heat capacity changed to reflect (,(0) in
equation (40).

The predicted cooling behavior depends on the tempera-
ture. At high initial temperatures, most of the energy loss
is due to the change in internal radiation energy.
Therefore, the heat capacity has an almost pure 8&° depen-
dence like that of Model 2, so the spectrum should resemble
a Madel 2 spectrum with the same high initial temperature.
The peak, however, should be displaced more to the left
because as the plasma cools, more energy is lost from mate-
rial than would be the case for radiation only. Such is the
case for the 10 KeV spectrum of a plasma with density equal
to lE+27 atoms/m¥; however, the shift is too s=mall to show
any appreciableggifference with the Model 2 spectrum in Fig-
ure 8. For low initial temperatures, most of the energy
loss is due to the2 change in material energy. The heat
capacity 1s nearly conutant and becomes more so as +the
plasma cools. In this case, the spectrum should resemble a
Model 1 spectrum having the same initial temperature, but
with the peak shifted right because of the energy losses
from internal radiation at temperatures closer to the ini-
tial temperature. The 0.02 KeV spectrum hehaves thus, but
again has a shift tooc small to show; 1t 1s almost identical

to the spectrum in Figure 9 in Chapter V.

37




Coocling behavior from intermediate starting temperatures

should show noticeable effects due to both material and

radiation energy.

The peak should fall between those of the

pure material case and the pure radiation case for the same

starting temperature.

behavior,

Figure 11 gives an example of this

with the Model 3 spectrum calculated for a plasma

density of lE+29 atoms/m=.
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Note that the left end of the Model 3 spectrum approaches a

value greater than zero because of the material contribution

to the loss of energy.

colder 8, ,

while for hotter 8§,

This becomes more pronounced for

the value approaches zero.

The predicted cooling behavior depends on density as

well.

forces the heat capacity to become more constant

Higher densities mean more material energy which

in nature
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beginning at higher temperatures. The effect of increasing

the density causes the lower end of the spectrum to approach
its peak limiting value for pure material energy, as shown
in Figure 12. A density of 1E+29 (not shown) versus 1E+27
atoms/m= resulted in no noticeable change in the spectrum.

See Figure 6 in Chapter IV for the limiting case.
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Fig. 12. Density Effect on Model 3 Time-Integrated
Spectra Normalized to Unit Area;
8,=0.02 KeV
Lower densities mean less material energy, and the
nature of the heat capacity becomes more like the case for
pure radiation. Figure 13 is a better example of what low-
ering the density daes; the spectrum becomes more like the
pure radiation case shown in Figure 11 , or Figure 10 in

Chapter V.
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Comparison with Planckian Spectra

Chapter V showed that two Planckian basis functions fit
the fluence spectra of Model 2 much better than a single
basis function. This is generally true for any spectrum
having a shape closely resembling that for the pure radi-
ation case. However, the curve-fit becomes worse for low
temperature or high density Model 3 spectra as they become
similar in shape to Model 1 spectra. Figures 14 and 15

support these conclusions for different densities.
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Summary

Model 3 represents a more realistic theory of cooling
behavior between the extreme bounds of Model 1 and 2. The
fluence spectrum generated by Model 3 combines 2ffects of
both material and radiation energy losses which place the
most probable energy somewhere between the two extremes,
depending on density and initial temperature of the plasma.
In the case of high densities or low temperatures, Model 3
degenerates into the same behavior as Model 1l; the heat
capacity is nearly constant. At low densities or high tem-
peratures, it becomes like Model 2; the heat capacity
behaves as 6 . Although more realistic, this model is
simplistic and incomplete without taking into account the
release of energy as the ionization state falls for the ions
in the cooling plasma. This aspect is covered in the next

chapter.

42




VII. Model 4 - Radiative Cooling with Temperature Consis-

tent Heat Capacity

Model 4 concentrates on how material composition affects
the fluence spectrum of the cooling Planckian emitter. The
form of material energy presented in Model 1 is changed to
reflect the variable number of free electrons present in the
plasma as the temperature falls and they bind to the ions.

Binding energy is accounted for in yet another internal

energy term to calculate the heat capacity. The results
include variation in initial temperature and type af single
element material, but the general effect due to variation in

initial density is left to the previous chapter.

Model 4 Description

The fourth model describes the cooling plasma through
the loss aof three types of internal energy: material
energy, radiation energy, and binding energy, all functions
of temperature. As the temperature falls, free electrons in
the plasma lose kinetic energy and are captured through
electrostatic attraction by the ions, which eventually fill
all electron shells to become neutral atoms. The shell

structure is governed by:
ng, = 2j% . Jj=1.,2,.. (42)

where ng is the total number of electrons allowed in princi-

pal quantum state J . Electrons are assumed to fill inner

vacancies first and move progressively away from the nucleus
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to fill outer vacancies last. When an electron is captured,
it proceeds directly to the next unfilled vacancy, emitting
a photon of energy equal to the absolute difference between
the energy level of the vacancy just filled and the contin-
uum. No allowance is made for intermediate excited states.
The entire population of ions is considered to be at the
same ionization state; however, fractional numbers of bound
electrons are permitted to account for a distribution of
ionization states encountered in real physical situations.
This model applies primarily for all temperatures above the
point where the material vaporizes. But as long as the
initial temperature is hot enough to include some degree of
ionization, then energy losses attributable toc latent heats
of vaporization and fusion are negligible compared to bind-
ing energy, and the model is valid at all temperatures.
There is a restriction, however, on the upper limit for
density, depending on type of material, because Model 4 uses
a form of the Saha equation that assumes the free electrons

are nondegenerate.

Binding Energy

Model 4 assumes the binding energy for outer electrons
is less than that for inner electrons, which is consistent
with the idea that inner electrons partially mask the
attractive force of the nucleus. The energy level or ion-
ization potential for each bound electron is determined from

the following eguation (3:170):
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AL nfe’(ls (rz)/) .
E} - [H(j—) + 2R ~5— - Rz > ]_!..2.... (43)

where /4 is the ionization potential for an electron in the
ground state of a hydrogen atom; 27 is the effective ruclear
charge as seen by the electron in the fth energy state; n,
is the number of free electrons per atom; ¢ is the elec-
tronic charge of an electron; X is the radius of the spheri-
cal region surrounding the 1o0n which contains zero net
charge, i.e., n, free electrons; and 533,15 the mean square
radius of the electron orbit. The left hand term gives the
energy levels for a hydrogen—like atom with atomic number
Z;, while the right hand term corrects for interactions
between bound and free electrons, free electrons with the
ion, and free electrons with free electrons, and adjusts the
zero energy level so that all free electrons within the ion
sphere maintain positive energy. (Bound electrons have neg-
ative energy). For convenience, eguation (43) computes £,
in units of eV instead of Rydbergs if [, = 13.61 eV and the
right hand term is multiplied by 1/04ne,(1,802E-19 Jravyl
with ¢; , the vacuum permittivity, in F/m and R in meters.

The equation faor effective nuclear charge is (3:168):
7 1 \
2y = Z - Y no,, - n,(l - 2—]_2)0,, (44)

where Z is the element atomic number: M ard N, are the

number of electrons in the corresponding shells scresning
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the nuclear charge from the electron in question; and g,, and
0, are Slater screening constants (3:169). To find the mean

square radius (3:170):

(r2y = E.g_l.:(z. + i)
™, = Gl oo (45)

where Q¢ is the first Bohr radius for the hydrogen atom in
meters. Finally, the ion's sphere of influence has a radius

given by the relationship (3:170):

4 . 1
3R N.

(46)

where N, is the atomic number density.

From equation (43) and (46) it is seen that density is
one factor that determines the binding energy, -&, ,
required to remove the electron from the ion to become a
free electron. A plot of binding energy, -&, , versus den-
sity, N, , in Figure 16 for the outer shell of electrons in
carbon reveals that only densities less than 1E+28 atoms/m®
satisfy the requirement that it takes more energy to remove
the nmext electron than the previous one. Above this limit,
the electron density is so high that the electrons become
degenerate; that is, more than one electron occupies the
same energy level. This upper density limit differs with
atomic number Z , but for the four elements chosen, carbon,
aluminum, copper, and plutaonium, N, = 1E+27 atoms/m@ is

satisfactory for comparison of their spectra.
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Fig. 16. Binding Energy versus Atomic Number
Density for Carbon

The binding energy required to remove the outermost
electron from an ion or neutral atom can be related to tem-
perature by the following expression, taken from reference
(4), which is derived from the Saha equation (3:164) for a
plasma containing a single 2 material:

eI - [_2_(2_“_”";9)3/2] / [2—’—2 - 1] L j=1.2... (47)

N. h? n,

n,N, (48)

Il

N,

n,

Z - n, - )2(j-1)* (49)
7

where m,=35.685E-15 KeV-s2/m? is the mass of an electron; N,
is the electron density I1in 1/m2 ; h=4.1365-18 ¥kKeV-s is
Planck's constant; and £, and 0 are in KeV. If N, and n,
are given, then £, and 6 can be calculated from equations

(43) - (49, 0 is the temperature that corresponds to n,
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free electrons per atom. ~-E, is the energy needed to free
‘ the next electron to be added to the n, free electrons. It
1% not 1ncluded in the total binding energy required to
remove ny electrons, that is, the sum of the binding ener-
gies to remove each of the individual n; electrons.
So at temperature 9 , there are N,n, free electrons per

unit volume in the plasma, and the total binding energy is:
Upe(8) = Upe/V = =N,) E (n,(8)) (50)

where the sum starts with 0 KeV for =0 and adds the
binding energy for each additional electron remaoved from the
bound system. The function nr,(8) is linearly interpolated
from a table of values for nry versus 8 calculated from equa-
tions (43) - (49) for each element. A graph of n, versus 8

. in Figure 17 for copper, that is typical of other elements,
shows that equation (47) breaks down for transitions between
electron shells when n, approaches zero.

Because it is physically impossible to have more than

one value of n, electrons free from the atom at one tempera-
ture (which corresponds to one instant in time), the graph
is smoothed as shown in Figure 18 by removing some of the
points. In general, all elements have this "S"-shaped
curve, and full ionization occurs at increasing temperatures

for i creasing 2.
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Fig. 17. Linear—-Log Plot of Free Electrons per
Atom versus Temperature for Copper
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Fig. 18. Smoothed Linear-Log Plot of Free Electrons
per Atom versus Temperature for Copper
The function of total binding energy versus number of

free electrons per atom is linearly interpolated from a
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table also. Examples of both tables are given in Appendix A
. for copper. A typical graph of total binding energy versus
temperature is shown in Figure 19. All elements have this
irregular, "S"-shaped curve, with the abrupt changes in
slope caused by electron shell transitions and significant
changes in slope from the corresponding free electron versus
temperature curves. In general, total binding energy

increases with temperature and increasing 2.

Copper
1E+27 atoms/m>

40 A

30 -

20 1

10 1
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o T LERERSERAALI T T rTrin T LR ARL] T 1T T TTE0

0.001 0.01 0.1 1 10
Temperature (KeV)

Fig. 19. Linear-Log Plot of Binding Energy per
Atom versus Temperature for Copper

Appendix C has two computer programs to compute: 1) the
binding energy for a particular electron, and 2) the corre-

sponding temperature, from equations (43) - (49).

Material Energy

The material energy present in the plasma at any given

‘ time is dependent on the temperature and the number of free
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particles which is decreasing because electrons bind to the
ions as the temperature falls., Therefore, the material
energy term is changed to reflect, in addition to the ions,
the number of free electrons present as a function of tem-

perature, with each particle having energy equal to (3/2)8 :

Uy = N,(1 + n,(0))(3/2)8 (sh

Heat Capacity

The heat capacity is calculated from the expression for

internal energy density which now has the form:
u(@) = Nl + n.(6))(3/72)8 + ab* + NVZ[-E,(M(G))](SZ)

Because n(8) is different for every element and somewhat
difficult to express as an analytical function, the deriv-
ative dusdé is approximated by the change in internal energy

over a small change in temperature A9 as given by:

Au 1 1
c, = 3% - [ufo~gae) - u(s-3a0)] s as  (s3)

To get a feel for the magnitude of the change in binding
energy compared to the change in material energy per temper-
ature change of | KeV consider the graphs for copper again
in Figures 18 and 19. In Figure 18, the number of free
electrorns at a temperature of 1 KeV is about 28, and at 0.03
KeV 1t is about 7. The change in material energy per KeV

per atom, then, is:
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[(14-28)%(1) - (l+7)g(0.03)] / (1-0.03)

44 (KeV/KeV-atom)

In Figure 19, the binding energy at 6=1 KeV is about 27 KeV,
and at 8=-0.03 KeV it is 1| KeV. Hence, the change in binding

energy per KeV per atom is:

Auy,
N,AD

(27-1) 7/ (1-0.03) = 27 (KeV/KeV-atom)

The binding energy contributes approximately 60% as much
change in energy to the heat capacity as does the material
energy. For the other three elements, the ratio is approxi-
mately in the range of 30% - 110% . Thus, the change in
binding energy is the same order of magnitude as the change

in material energy.

Time-Inteqgrated Spectra

The time-integrated spectra for Model 4 are calculated
from equation (52) and (S3) substituted into equation (41)
from Chapter VI, Appendix A has the computer program to do
this with the appropriate change to {, in the subroutine to
compute heat capacity.

The contribution to heat capacity from material energy
in Model 4 is an order of magnitude or greater, depending on
2, than for Model 3, at temperatures above 0.1 KeV when the
atomic number density N, is the same. Add to this roughly
the same contribution from binding energy, and the influence

on the time-integrated spectrum due to the combined change
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in material and binding energy is much greater than Model 3.

The combined effect is most significant in the temperature
range where most of the electron bindind occurs, generally
between 0.01 and 1 KeV for elements from carbon to pluto-
nium. Spectra having initial temperatures of | KeV should
show significant increases in energy density near the low
end of the spectrum with a cor-esponding shift in the main
peaks to the left, as compared to Model 3 spectra with the
same density and temperature parameters. This also means
the energy density should increase near the left end with
increasing 2. Figure 20 portrays the results of four flu-

ence spectra of differing material, with 8i=1 KeV and the

same atomic number density, N, = 1E+27 atoms/m?.
0.35
. = a - plutonium
E 0'0-1 — b - copper
€ .95 4 ) = ¢ — aluminum
r S — 4 - corben
9 A
y 0.2
N,
2 0.15 \\\
n SN
8 o k\
f
t \ .
y 0.05 RS
K
0 1 T L T L] T A d

3 4 5 6 7 & 9 10
Photan Energy (KaV)

Fig. 20. Comparison of Model 4 Spectra

Normalized to Unit Area; g=1 KeV,
N, = 1E+27 atoms/m®
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One striking feature of these Model 4 specta is evidence
of a small peak or hump at low energies caused by the change
in material and binding energy, but primarily binding
energy. (This peak is not due to the same anomaly noted in
Model 1 at the lower end of the spectrum because a smaller
temperature mesh does not move the peak closer to &£=0 ).
The peak is more prominent for higher 2 because more inner
electrons bind per degree change in temperature, releasing
more energy, than for lower 2. The exception in Figure 20
is plutonium, and the reason it has no prominent small peak
is because the temperature does not start out hot enough to
observe a rise in the change in binding energy to its great-
est value between 68=1 and 2 KeV as shown in Figure 21,
although it does rise to its greatest change in the number
of binding electrons between 8=0.02 and 0.05 KeV, as shown

in Figure 22.

54




Fig.

Auy, /{N, B ) (KeV/KaV—atom)

160

140
120 4
1001
80 -
80
40 4

20 1

or"

Plutonium
1E+27 atoma/m3

T LRI RALLLI T LRI RR AL L] ryyryar 1 T T TNy ¥ LR EAL

0.001 0.01 o1 1 10 100

2l.

Temperature (KeV)

Linear~Log Plot cf Change in Binding Energy
per Atom with Respect to Temperature
versus Temperature for Plutonium

Anf /(N, A8 ) (1/KeV—atom)

350
300 -
250
200 y
150 -j
100 4

50 4

Plitonium
1E427 atems/m>

TN

L] T T T TTryTrT T T T LB ALELE) T L) T T TTTET

0.01 0.1 1 10

Ternperature (KeV)

Linear-Log Plot of Change in Free Electrons
per Atom with Respect to Temperature
versus Temperature for Plutorium

55




Spectra having initial temperatures much higher than 1
KeV show increasing tendency to become like Model 2 spectra
because of the dominant effect of radiation energy at high
temperatures where most of the energy is radiated. Spectra
having initial temperatures below about 0.01 KeV become more
like Model 1 spectra with constant material energy because
all of the electrons are bound, eliminating any change in
binding energy, and the change in radiation energy is too

small compared to the change in material energy.

Comparison with Planckian Spectra

The result of a two-Planckian curve-fit for the Model 4
copper spectrum with starting temperature equal to 1| KeV and
atomic number density equal to lE+27 atoms/m® is displayed

in Figure 23.

0.2
a b Copper, 1E+27 atoma,"ma
Eaa

E 0.254 N — a — Model 4, 1 KeV
e ) - b - Two-Planckian Fit
I 0.2 0.1129 gnd 0.6588 KeV
C
3 1 a1 = 0.01524, 42 = 012345

0.151 SSE = 0.42912
D
a
5 0.1 N
i N
' 0.05- N
y SN

0 T g T T T T T Y h
0 1 2 3 4 5 & 7 8 9 10

Photon Energy (Kevj

Fig. 23. Comparison of Two-Planckian Curve=Fit
with Model 4 Spectrum
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Again, the fit is not as good as higher temperature or lower
Z spectra that look more like Model 2 spectra having only
internal radiation energy. The fit is better for a particu-
lar 2 material when its spectrum resembles the plutonium
spectrum in Figure 20; that is, the initial temperature is
equal to or lower than that at which the greatest change in
binding energy occurs, with the density being sufficiently
low, so that the lower end of the spectrum has no prominent
small peak and approaches an energy density value close to
zero.

A much better curve-fit is obtained by combining three
Planckians and a Model 1 spectrum. Two Planckians are used
to match the curve from the top of the main peak to the
upper end of the spectrum, while a scaled Model ! spectrum
is used to match the majority of the curve from the lower
end of the spectrum toc the top of the main peak. The third
Planckian is scaled to match the small peak. The result is
shown in Figure 24 and compared to the Model 4 copper spec-

trum in Figure 25.
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Copper Spectrum
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Summary

Model 4 presents the most realistic case for the cooling
Planckian emitter of the four models examined. It accounts
for losses in material energy, radiation energy, and binding
energy, the major contributors to internal energy, as the
temperature falls. The cooling behavior of Model 4 may not
be truly accurate because of the somewhat arbitrary smooth-
ing of the free electron curves; however, it gives general
trends in the spectra for changes in temperature, density,
and material composition parameters. As the ionization
state falls within the cooling plasma, the change in mate-
rial and binding energy may produce a smaller peak in energy
density at lower photon energies than the main peak caused
primarily by the change in internal radiation energy,
depending on initi1al temperature and density. If the ini-
tial temperature and density can be deduced and are in an
appropriate range, the material composition might be
recognized from its signature on the fluence spectrum, pro-
vided a detector has the resaolution to differentiate the

peaks.
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VIII. Conclusions and Recommendations

The objective of investigating the nature of the time-
integrated spectrum for a cooling Planckian emitter was
approached by considering four models that dealt with the
composition and change in internal energy radiated out
through the surface of the emitter. The change in material,
radiation, and binding energy taken separately or in combi-
nation, give insight to how these quantities determine the
heat capacity, which in turn determines how much energy 1is
released as the temperature drops. Three parameters were
varied, temperature, density, and material composicion, each
of which changed the internal energy for some or all of the
models. Alsa, a few selected spectra were compared with
Planckian spectra to see if they could be fit with one or

two Planckian basis functions.

Conclusiaons

This study of time-integrated spectra revealed the fol-
lowing conclusions:

- The most significant effect of material and binding
energy is seen at lower photon energies of about 1 KeV
or less, depending on initial temperature and density,
and may produce a small peak or hump in the spectrum
separate from the main peak. The material composition
could be determined from this signature if the initial

temperature and density are known.
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— The fluence spectrum of a cooling Planckian emitter
has a non—-Planckian distribution of energy.

- Two Planckian basis functions fit fluence spectra
from high initial temperature emitters best, or those
that resemble Model 2 spectra, whereas the fit becomes
poor for fluence spectra from high density emitters, or
those that resemble Model 1 Spectra. In such case, the
fit becomes better if more Planckian basis functions are

used.

Recommendations

Further improvements to Model 4 can be made by including
the effect of expanding volume on temperature and density,
and also accounting for diffusion of energy from a hotter
interior to a colder surface to approximate the true temper-

ature at which radiation is emitted.
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Appendix A: Caomputer Program to Calculate

the Time-Integrated Spectrum

The following program calculates the time-integrated

spectrum using the academic version of TK Solver Plus

(35).

The heat capacity is changed in the subroutine labeled RULE

FUNCTION: C for the different models. A "C" at the far

left edge indicates the equation is cancelled and is
used in computations, similar in effect to a comment
denoted with " .

VARIABLE SHEET ——=———u———— For Acadesic Use Only

St Input—— Name— OQutput— Unit—— Comment
94 i Atosic nuaber,
.02 91 KeV Initial tesperature.
00001 lowE KeV Lowest photon energy.
.01 hight Kev Highest photon energy.
300 8steps Nusber of tesperature steps (mesh).
100 Esteps Nusber of energy steps {mesh).

(Each mesh sust be an even nuaber for

Simpson's rule of integration).

'Planck  func Planck function on Function Sheet,
'lonize  func2 Tonize function on Function Sheet.
30 ratio E/8.

1E27 Nv 1/2%3 Nusber density.

area 3.941E-8 KeV/n"3  Area under non-normalized spectrua.
3.941044336095132E-8

5.896E-10 areal KeV/a"3 Area | under non-norealized spectrus
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for split energy mesh.

5.895735721927842E-10
{ ault Density multiplier.
—_—— RULE SHEE] —————————————— For Acadeaic Use DRIY

5 Rule

Call blank('f) *blank erases array values.

Call blank('E)

Call blank{'s)

Call Cool(func;area)

PROCEDURE FUNCTION: Cool ——=—=———— For Acadeaic Use Only

Comment: Calculates spectrua.
Parameter Variables: lowE,highk,Esteps,8i,0steps
Input Variables: func
Qutput Yariables: F

§ Stateaent

' Additional notation nmot included in VARIABLE SHEET:

' deltak Energy interval.

' E Photon energy value,

' 'fli]  (An array). Value of the normalized Planck function

’ times heat capacity integrated over the appropriate temp-
' erature limits, with the ith £ as an energy paraseter,

' F Sua of all 'fli] integrated over the appropriate energy

' limits. (Area under non-normalized spectrua).

’ k Nultiplication factor = 1 or 2.

' 's{i] (An array). Normalized spectrum value = 'fli] / F,

' value Intersediate function value.
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* Check to see that energy mesh has even number of intervals.

B e o e o o o e e 0 e o S R e sl i S o e

IF MOD(Esteps,2)4<>0 THEN error:= odd_nusber_of _intervals

Integration over energy using Sispson's rule. Basic procedure is borrowed

and modified froa reference (3).

deltat := (hight - lowE} / Esteps
E := louE
ks= 1
value 1= 0
FOR i := 2 70 Esteps
E = E + deltat
k:=3-k

'flil

Sispson(func, 9i, Osteps, E)

value := value + k # 'f{i]
NEXT i
‘{11 := Simpsonifunc, 61, 8steps, lowk)
"flEsteps + 1] := Siapson(func, 8i, 8steps, hight)

F 1= (2 # value + 'f{1] + 'flEsteps ¢+ 11) # deltaE / 3

b4




* Calculate normalized spectrua and fill lists (arrays) for plotting.

E := lonE
FOR i := 2 TO Esteps + 1
E:= £ + deltat
'Bli) = E
's{il = '"fli}1 / F
NEXT i
'E[1] := lonE
's{1 = 'f1I / F
PROCEDURE FUNCTION: Simpson =——== For Acadesic Use Only
Coasent: Integration over tesperature using Sispson's rule.
Parameter Variables: ratio,fi
Input Variables: func,high8,8steps,E
Qutput Variables: value

§ Statesent

* Description: Standard method of nuserical integration using second-degree

‘ pelynosial approximation of integrand.

* Additional notation not included in VARIABLE SHEET.

' applyifunc, a, b) Calls a named function (func) defining the
' integrand and supplies the appropriate arquaents

' (a, b).

' deltad Temperature interval.

' highe  Upper tesperature integration limit.




' lowd Lower teaperature integration lisit,

' tesp  Teaperature.
' value  Intersediate function value and final value for inte-
) gration over teaperature.

* Check to see that tesperature mesh has even nusber of intervals,

IF MOD(6steps,2)<>0 THEN error:= odd_nusber_of intervals

* Change lower tesperature integration limit based on energy E and ratio of

* E/9. E/ratio must be lower than 9i.

lowd .= € / ratio

IF lowd >= 8i THEN error := ratio_is_too_saall

Integration over tesperature using Simpson's rule. Basic procedure is bor-

* rowed and sodified from reference (5).

deltad := thighe - lowd) / Osteps

temp := lowd
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k=1
value 1= 0
FOR i := 2 TD Osteps
teap := tesp + deltad
ki=3-k
value := value + k # apply(func, E, tesp, deltad, lowd, highd)
NEXT i
value := (2 # value + apply(func, E, lowd, deltad, lowd, highd) + apply(func,
* E, highd, deltad, lowd, high8)) # deltad / 3
RULE FUNCTION: Planck —=—=————— For Acadesic Use Only
Comment: Noramalized Planck function.
Paraseter Variables:
Argument Variables: E,6,deltad,lowd,hight
Result Variables: p

§ Rule

" Additional notation not included in VARIABLE SHEET:
’ p Normalized Planckian times heat capacity.

' planck Noraalized Planckian value.

planck = 15 / (pi{})"4 # E*3 / (84 # (EXP(E/®) - 1))
= planck & C{9, deltad, lowd, highé)
RULE FUNCTION: { —==——————=———= For Acadeaic Use Only
Cossent: Heat capacity.
Paraseter Variables: Nv,8i,Z
Arguaent Variables: 6,deltad,lowd,highd

Result Variables: heatcap
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5 Rule

* Additional notation not included in VARIABLE SHEET and previous functions.

‘ ad Radiation constant.

' heatcap  Heat capacity.

' ionl Binding energy at teapl.

y iond Binding energy at teapd.

y lonize Function that cosputes binding energy per atoa.
y sateriall Naterial enmergy density at teapl.

. sateriale Material emergy density at teap2.

' radt Radiation energy density at templ.

’ radd Radiation energy density at teap2.

: starf Intersediate 2star functien value.

' starB Intersediate 2star function value.

: starl Zstar function value for teapl.

' stard Zstar function value for teape.

. temp Interaediate teaperature value.

‘ tesp! Lower tesperature of tesperature interval,

* teapd Upper temperature of teaperature interval,

’ tesp3 Intersediate temperature value,

* 9 Tesperature value.

* Zstar Function that computes the nuaber of free electrons
’ per atos at a given tesperature.
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C heatcap = 1

heatcap = 8"3

C a2 = 0.5634E+28 "Radiation constant expressed in 1\(KeV-8)*3.

C heatcap = Nv # {3/ 2) ¢ 4 # a2 ¢ 8°3

C a2 = 8,5634E+20 “Radiation constant expressed in {\(KeV-a2)"3,

* Deteraine lower and upper temperatures of interval.

C temp = 0 - deltad / 2
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C IF 0 = lowd THEN teapl = lowd ELSE tespl = temp

‘ C teapd = 0 + deltad / 2

C IF 8 = higho THEN teap? = high@ ELSE teap? = tespl

* Determine nuaber of free electrons per atom at both temperatures.

C starA = ABS{Zstar(teapf))

C IF starA > Z THEN stari = Z ELSE starl = starA

C starB = ABS{Zstar(teap?))

C IF starB > Z THEN star2 = Z ELSE star? = starB

" Cospute saterial energy density at both teamperatures.

C matter! = Nv # (] + starl) # 3/ 2 + {empl

C mattere = Nv # (1 ¢ stard) # 3/ 2 & tesp?

* Cospute radiation energy density at both temperatures.

C radl

a2 + tespl™h

L rade

ac + tesp24
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. * Cospute binding energy per atom at both tesperatures.

C ion! = Nv # ABS(lonizelstarli)

C ion2 = Nv & ABS{Ionize(star2))

* Compute heat capacity for tesperature interval.

T commm e o oo o v -  m o o e

C heatcap = (matter? + rad2 + iond - {matter! + rad! + ionl)) / deltad

LIST FUNCTION: Zstar —————=——=—— For Acadeaic Use Only

Cosaent: Interpelation function for free electrons vs tesperature,
. Dosain List: k17a

Mapping: Linear

Range List: nf7a

Elesent— Doamain Range

1 0 0

2 .00243345426244727 .01

3 .0040090803003783 .t

4 .00746489707885056 .5

3 J0113754622168454 1.5

b .0133180652203634 2

7 .0168206934563477 3

8 .0240465353092386 5
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10

15

17

19.5

23

25

26

26.5

28.5

28.9

28.98

28.99

29

29

9 0475779982016184
10 .0857295777914731
{1 . 113199665581 666
12 .177949883904736
13 .278790992266399
14 .348411231622957
15 .407371098297251
14 -463070257418233
17 1.36937448331804
18 1.70020947649073
19 2.12480361177438
20 2.36418313794776
21 3.62390540771914
22 10

Comsent:

Dosain List:
Napping:
Range List:

Elesent— Dosain

LIST FUNCTION: lonize

For Academic Use Only

Interpolation function for binding energy vs nf,

! 0
2 1
3 2
4 3
5 4
b 5

nflu

Linear

bindCu
Range
0
01035774
.10223568
.20641458
. 32433908
45741488
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10

it

te

13

14

18

17

18

19

20

2l

22

23

2h

25

eb

27

28

30

10

i1

ie

13

14

15

16

17

18

19

20

21

22

23

24

23

24

2?7

28

29

,60690848

77416718

. 56031848

1.16729018

1,39581038

1.64740738

1.92340938

2.22314478

2.53394218

2.91112998

3.29803488

3.71599148

4,16632238

4.65035818

6.26254918

7.94334218

9.75321318

11.44063918

13.62209718

13.70206518

17.88301918

20.16743618

31.01259518

42.094627618

»
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Appendix B: Computer Program to Fit Time-Integrated Spectra

with Two Planckian Basis Functions

This program computes the best least squares approxima-
tion for a spectrum from a given range of temperatures and
two Planckian basis functions. Its output gives the two
Planckian temperatures and the coefficients necessary to
calculate the curve, plus a measure of how good the fit is
using the sum of the square of the errors or difference
between original and calculated Y-axis values. The program
1s written in FORTRAN 77 language and calls a mathematical
library routine DFNLSQR written by IMSL (&), Typical output

follows the program.

* Maj Drew Fisher
* 14 Oct B9

PROGRAM PLANCK

* This program computes a least squdres approximation with user-
* supplied basis functions. The approximation takes the form

*

* Y = COEFF(1) + COEFF(2)#F(1,X) + COEFF(3)#F(2,X)

* Definitions:

* COEFF - Coefficient array.

* COEFF2 - Storage array for coefficients,

* DELTAT - Temperature increment.
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DFNLSQ

ENERGY

F

FRACT

INDEX1

INDEX2

INTCEP

IWT

JJ

N

NBASIS

NFLIP

NSIZEL

NSIZE@

NUM1

NUM2

RESET

SSE

STORE

TEMP!

TEMPZ2

THETAI

Library routine that computes least

squares approximation with user-supplied
basis functions.

Array of X-axis values.

Subroutine for computing values from

basis functions.

Array of original Y-axis values.

Stores index caounter I.

Stores index counter J.

Intercept.

Weight option (not used).

A counter.

Counter used for number of data points.
Number of basis functions.

Flip flop counter.

Array size.

Array size.

Loop index.

Loop index.

Original TEMP!.

Sum of squares of the errors - an indicator
of fit.

Storage array for SSGE.

Stores temperature for first basis function.
Stores temperature for second basis function.

Temperature for first basis function.
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THETAZ - Temperature for second basis function.
WEIGHT - MWeights given to basis functions (an array of
higher dimension if weights other than | are

assigned).

INTEGER I, INDEX1, INDEX2, INTCEP, IWT, J, JJ, M, N, NBASIS
INTEGER NFLIP, NSIZE!, NSIZEZ2, NUML, NUMZ2
PARAMETER (IWT = 0, NBASIS = 2, NSIZEl = 10, NSIZE2 = 200)
DOUBLE PRECISION COEFF(NSIZEl), COEFF2(NSIZE1), DELTAT
DOUBLE PRECISION ENERGY(NSIZE2), FRACT(NSIZEZ2), RESET, SSE
DOUBLE PRECISION STORE(2), TEMPl, TEMP2, THETAl, THETA2, WEIGHT
PARAMETER (WEIGHT = 1)
COMMON THETALl, THETAZ

EXTERNAL DFNLSR, F

3t - - P P

OPEN (UNIT 20, FILE = 'cufit', STATUS = '0OLD")

N =1

10 READ (UNIT = 20, *, END = 20) ENERGY(N), FRACT(N)
PRINT*, N, ENERGY(N), FRACT(N)

N=N+1

GOTO 10

20 CONTINUE
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PRINT#*
PRINT*, 'Number of points =', N

CLOSE (UNIT = 20)

PRINT#, 'Include intercept? (1 = Yes, O = No)'

PRINT#*

READ*, INTCEP

PRINT#*

PRINT#, 'For investigation, start THETAl1l and THETA2 at'
PRINT*, 'what temperatures (KeV)? (THETAl, THETA2)'
PRINT#*

READ#, THETA1l, THETA2

PRINT#*

PRINT#, 'Increment temperatures by what DELTAT?'

PRINT#

READ#*, DELTAT

PRINT#*

PRINT*, 'Loop information. How many iterations for each'
PRINT#, 'loop? (inside [THETAl1l, outside [THETA21)'
PRINT#*

READ#, NUM2, NUM1

PRINT*
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%  ===== S
. * Initialize values.
* ======ss==========
NFLIP = 1
RESET = THETAIL
STORE(1) = 1.0D+00
STORE(2) = STORE(1)
TEMP1 = THETA!l
TEMP2 = THETARZ
INDEX1 = 1
INDEX2 = 1
JI =0
. * FE 3PP T it TPt 3 P P P s F P 31 2 P+ P P E P+ + E F F 2 1+
* Start search for temperatures that give lowest SSE.
* =======zzz=ss=======z=z==s=======sz=ss====s===s==s=======

DO 80O I = 1, NUM]
PRINT*, 'I =', 1
THETA1 = RESET
DO 70 J = 1, NuM2
IF (THETA1 .NE. THETAZ2) THEN
JJ3 =37 +1
CALL DFNLS@ (F, INTCEP, NBASIS, N, ENERGY, FRACT, IWT,

WEIGHT, COEFF, SSE)
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40

- e o e e e e e e e e e e e e e e

Store coefficients from first loop pass in

temporary storage.

IF (JJ .EQ@. l) THEN
DO 40 M = 1, NBASIS + 1
COEFF2(M) = COEFF(M)
CONTINUE

ENDIF

NFLIP = 3 - NFLIP

STORE(NFLIP) = SSE

e o e e e o e e S e T e e e o 2 e s
2t 2+ 3 ====F==

Compare SSE with the old value of SSE and overwrite

temporary storage locations with the smallest value

and its associated values.

Three cases are checked

and a fourth one implies no change.

IF (NFLIP .EQ. 2 .AND. STORE(2)

STORE(1) = STORE(2)

TEMP1 = THETAl
TEMP2 = THETAZC
INDEX1 = 1
INDEX2 = J

DO SO M = 1, NBASIS + 1
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50

60

70

COEFF2(M) = COEFF(M)
CONTINUE

ELSEIF (NFLIP .EQ. 1 .AND. STORE(!) .LT. STORE(2)) THEN

TEMP1 = THETAL
TEMP2 = THETAZ
INDEX1 = 1
INDEX2 = J

DO 60 M = 1, NBASIS + 1
COEFF2(M) = COEFF(M)
CONTINUE
ELSEIF (NFLIP .ER. 1 .AND. STORE(2) .LT. STORE(1)) THEN
STORE(1) = STORE(2)
ELSE
ENDIF
STORE(NFLIP) = STORE(1)

ENDIF

I T P T T T T T T T e T T N T P T T e e e

Increment temperature for inner loop, and after last pass
print smallest SS5E encountered in inner loop, then

increment temperature for outer loop.

-+ 3 ittt - - - R - - 1 -+ P - 2 -

THETA1 = THETAL + DELTAT
CONT INUE
PRINT#, STORE(1)

THETA2 = THETAZ + DELTAT
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...

80 CONTINUE

* S==o=s=======
* Print ocutput.
%* SESsES=z==Sss==
PRINT#*
PRINT#, 'I =', INDEX1, 'J =*', INDEX2
PRINT#, 'THETAl =', TEMP1, 'THETA2 =', TEMP2
PRINT#, 'Sum of the square of errors =', STORE(1)
PRINT#, 'Coefficients are: '
DO 90 M = 1, NBASIS + 1
PRINT#*, COEFF2(M)
90 CONTINUE
‘l' END
* ==z=======z======zz==s====z========================================
* Subroutine for basis functions.
*
* Definitions:
* F - Subroutine for computing values from user-
* supplied basis functions.
* K - Basis function number.
* X - X-axis value.
* THETAl - Temperature for first basis function,
* THETA2 - Temperature for second basis function.

DOUBLE PRECISION FUNCTION F(K, X)
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INTEGER K
DOUBLE PRECISION THETAl, THETAZ, X
COMMON THETALl, THETAZ2

IF (K .EQ@. 1) THEN

n
[]]

X#%3,0D+00 / (THETA1##4,0D+00 * (DEXP(X/THETAl)

$ ~ 1.0D+00))

n
1]

X#%#3,0D+00 / (THETA2##4.0D+00 * (DEXP(X/THETAR2)

$ ~ 1.0D+00))
ENDIF

RETURN

END

The following output is typical of the above program and
was used to generate the two-Planckian fit in Figure 10 of
Chapter V.

%“ £77 planck.f -limsl
planck.f:

MAIN planck:

f:

% a.out

Number of points = 197

Include intercept? (1 = Yes, O = No)
0

For investigation, start THETAl and THETA2 at
what temperatures (KeV)? (THETAl, THETAZ2)

409, .B40
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Increment temperatures by what DELTAT?
.001
Loop information. How many iterations for each

loop? (inside [THETAll, outside [THETA21)

3.0954533670417d-04
1= 2
3.0024962916826d-04
I = 3
2.9380294559385d-04
I = 4
2.9019676931351d-04
I1 =5

2.8935158596325d-04

I = 5 J= ¢
THETAL = 0.41000000000000 THETAZ2 = 0.84400000000000
Sum of the square of errors = 2.8935158596325d-04

Coefficients are:
1.8698923739682d-02
0.13468654781493

O.

The two—-Planckian fit is calculated from:




B4

0

1.8698923739682F - 02
0.13468654781493
0.410

0.844
E’/[exp(E/08,)-1]
E>/[exp(E/0,)-1]

a, + a,'P, + a, P,




Appendix C: Computer Programs to Calculate Binding

Enerqy and Temperature

The following computer program calculates the binding
energy to remove the next bound electron from an atom and is

written in Quick Basic (7).

' Maj Drew Fisher

' 3 Nov 89

' 25TAR.BAS

' Ver, 1.0 S Nov 89

' This program computes Z2j* and Ej for use in Zstar.tk to
find free

' electrons vs temperature.
OPTION BASE 1

DEFINT I-N

SIZE = 10

REDIM xN(SIZE), SIGMA(SIZE, SIZE)

' Slater screening constants fram (3:169).
' Column 1 - 9.

DATA 0.6250, 0.9383, 0.9811, 0.987 , 0.994
DATA 0.2346, 0.6895, 0.8932, 0.94 , 0.97
DATA 0.1090, 0.3970, 0.7018, 0.85 , 0.%92
DATA 0.0617, 0©.2330, 0.4781, 0.705 , 0.83
DATA 0.03%98, 0.1552, 0.3312, H.5331 , 0.72

DATA 0.0277, 0.1093, 0.2388, 0.400 , 0.854
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DATA 0.0204, 0.0808, 0.1782, 0.3102, 0.4359
DATA 0.0136, 0.0625, 0.1378, 0.2425, 0.371
DATA 0.0123, 0.04%4, 0.1106, 0.1936, 0.299
DATA 0.0100, 0.0400, 0.0900, 0.1584, 0.245
' Column 6 - 10.

DATA 0.997 4, 0.999 , 1.000 , 1.00C , 1.000
DATA 0.984 , 0,990 , 0.993 , 0.995 , 1.00
DATA 0.955 , 0.97 , 0.98 , 0.99 , 1.00

DATA 0.0 , 0.95 , 0.97 , 0.98 , 0.9%9

DATA 0.83 , 0.90 , 0.9 , 0.97 , 0.98
DATA 0.735 , 0.83 , 0.%0 , 0.95 , 0.97
DATA 0.610 , 0.743 , 0.83 , 0.90 , 0.93
DATA 0.506 , 0.635 , 0.750 , 0.83 , 0.90

DATA 0.431 , 0.544 , 0.656 , 0.760 , 0.83

DATA 0.353 , 0.466 , 0.576 , 0.67 , 0.765

' Read data into array SIGMA(I, J).
CLS
FOR I =1 TO 10

FOR J =1 70 3

READ SIGMA(I, )

NEXT J
NEXT I
FOR I = 1 TO 10

FOR J = 6 TO 10
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READ SIGMA(I, I

' User input.

INPUT "Atomic number, 2"; 2

PRINT

INPUT "Level, J"; J

PRINT

INPUT "Number of free electrons per atom"; xNF
PRINT

INPUT "Number density [1/m~31"; xNUMDEN

' Compute effective atomic number Zj*.
SUM1I = O

FOR I =1 70 J

xN(I) =2 #« I = 2

TEMP = SUMI

SUM1 = SUM1 + xN(I)

IF 2 - xNF < SUM1 THEN xN(I) = 2 - xNF - TEMP
NEXT I
sumM2 = 0

IF J > 1 THEN

FOR T =1 T0 J -1
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SuM2 = SuM2 + SIGMA(I, J) # xN(I)
NEXT 1
END IF
Z)STAR = 2 - SUM2 - xN(J) # (1 -1 /7 (2 *# J = 2)) # SIGMA(T,
J)
' Compute ionization potential, Ej, to remove electron.
a0 = 5.2892E-11 'Bohr radius (ml.
eCHARGE = 1.602E-19 'Electron charge [C1].
EPSILO = 8.854E-12 'Permittivity of vacuum [F/m]
PI = 3.14139
RYDBERG = 13.61 'Rydberg constant [eVl.

rigd = a0 -~ 2 # J ~ 4 / Z2ijSTAR - 2 # (7 / 4 + 53 / (4 = J °

a))

R = (3 / (4 # PI # xNUMDEN)) =~ (1 / 3)

ENER = eCHARGE / (8 # Pl * EPSILO * R) ‘feVl

Ej = -RYDBERG #* (2jSTAR 7/ J) =~ 2 + xNF % ENER * (18 / 5 -

' Print output.

PRINT "Atomic number = "; 2

PRINT "Number density [1/m~31 = "; xNUMDEN
PRINT "Level, J = "; J

PRINT "Electrons in J level (nj) = "3 xN(I)
PRINT "Free electrons per atom (2%#) = "; xNF

a8




-

PRINT "Effective atomic number (2j%) = "; 2jSTAR
‘ PRINT "Ionization potential (Ej) [eV] = "; Ej

PRINT

END

The next program computes the temperature corresponding
to the binding energy calculated in the previous program.

———— VARIABLE SHEET —————————=o— For Acadesic Use Only

St Input—— Nase— Dutput— Unit—— Coament

3.685E-15 me see »>  Electron sass in KeVis/a)"2.
4.136E-18 h KeV-s Planck constant.
29 4 Atomic nusber,
-10868.9 Ej eV Ionization potential.
L 27.1 nf {/atos  Free electrons per atos,
‘ €27 W 1/0*3  Atomic nusber density.
1 b Principal quantus state.
1.9 nj Nusber of electrons in state j.
L 8 .92942099 KeV Temperature.
P .00038227 Paraseter.

RULE SHEET ————————————————For Acadeaic Use Only

S Rule

P=h2/ (2#pi() tae) # (nf e Nv/2&(2¢%j%2/nj-11(/1I

9= -Ej / In({8 / P)*(1.3D)
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